Oligodeoxynucleotide synthesis using protecting groups and a linker cleavable under non-nucleophilic conditions
نویسندگان
چکیده
Oligodeoxynucleotides (ODNs) containing latent electrophilic groups can be highly useful in antisense drug development and many other applications such as chemical biology and medicine, where covalent cross-linking of ODNs with mRNA, protein and ODN is required. However, such ODN analogues cannot be synthesized using traditional technologies due to the strongly nucleophilic conditions used in traditional deprotection/cleavage process. To solve this long lasting and highly challenging problem in nucleic acid chemistry, I used the 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) function to protect the exo-amino groups on the nucleobases dA, dC and dG, and to design the linker between the nascent ODN and solid support. These protecting groups and linker are completely stable under all ODN synthesis conditions, but can be readily cleaved under nonnucleophilic and nearly neutral conditions. As a result, the new ODN synthesis technology is universally useful for the synthesis of electrophilic ODNs. The dissertation is mainly comprised of two portions. In the first portion, the development of the Dmoc-based linker for ODN synthesis will be described. The construction of the dT-Dmoc-linker required a total of seven steps to synthesize. The linker was then anchored to the solid support―controlled pore glass (CPG). In the second portion, the syntheses of Dmoc-protected phosphoramidites ODN synthesis monomers including Dmoc-dC-amidite, Dmoc-dA-amidite, Dmoc-dG-amidite are described. The protection of dC and dA with 1,3-dithian-2-yl-methyl 4-nitrophenyl carbonate proceeded smoothly giving Dmoc-dC and Dmoc-dA in good yields. However, when the same xv acylation procedure was applied for the synthesis of Dmoc-dG, very low yield was obtained. This problem was later solved using a highly innovative and environmentally benign procedure, which is expected to be widely useful for the acylation of the exoamino groups on nucleoside bases. The reactions to convert the Dmoc-protected nucleosides to phosphoramidite monomers proceeded smoothly with high yields. Using the Dmoc phosphoramidite monomers dA, dC, dG and the commercially available dT, and the Dmoc linker, four ODN sequences were synthesized. In all cases, excellent coupling yields were obtained. ODN deprotection/cleavage was achieved by using nonnucleophilic oxidative conditions. The new technology is predicted to be universally useful for the synthesis of ODNs containing one or more electrophilic functionalities.
منابع مشابه
Solid-Phase Synthesis and Hybrization Behavior of Partially 2′/3′-O-Acetylated RNA Oligonucleotides
Synthesis of partially 2'/3'-O-acetylated oligoribonucleotides has been accomplished by using a 2'/3'-O-acetyl orthogonal protecting group strategy in which non-nucleophilic strong-base (DBU) labile nucleobase protecting groups and a UV-light cleavable linker were used. Strong-base stability of the photolabile linker allowed on-column nucleobase and phosphate deprotection, followed by a mild cl...
متن کاملCleavable trifunctional biotin reagents for protein labelling, capture and release.
Trifunctional biotin reagents incorporating cleavable linkers are evaluated for their usage in protein enrichment. A linker based on the Dde protecting group leads to efficient release of protein targets under mild conditions. It additionally contains a masked trypsin cleavage site, which eliminates the majority of the tag during tryptic digestion.
متن کاملSynthesis and Photosensitizing Properties of an Activatable Phthalocyanine-Subphthalocyanine Triad
In this article, we describe a photosensitizer (PS) whose ability to generate singlet oxygen (1O2) and fluorescence emission has been designed as tumor responsive. More specifically, the PS consists of a silicon phthalocyanine (SiPc) core, axially substituted with two subphthalocyanine (SubPc) units, covalently linked by a disulfide linker, which is cleavable in the presence of a strong reducin...
متن کاملFluoride-Cleavable, Fluorescently Labelled Reversible Terminators: Synthesis and Use in Primer Extension
Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators that enable array-based DNA sequencing-by-synthesis (SBS) approaches. Herein, we describe the synthesis and full characterisation of four reversible terminators bearing a 3'-blocking moiety and a linker-dye system that is removable under the same fluoride-based treatment. Each nucleotid...
متن کاملSynthesis of Pyranopyrazole Compounds Using Heterogeneous Base Catalyst Based on 1,3,5-Triazine-2,4,6-Triamine Modified Nano Rice Husk Silica
In the current study, amorphous silica nanoparticles were easily extracted from rice husk ash. The target composite was synthesized by the direct incorporation of chloropropyl groups through the condensation of nanosilica and 3-chloropropyl trimethoxysilane and then grafting of 1,3,5-triazine-2,4,6-triamine (Melamine) onto the propyl groups by the simple nucleophilic substitution reaction (RHA@...
متن کامل